
Review series on helminths, immune modulation and the hygiene
hypothesis: How might infection modulate the onset of type 1

diabetes?

Introduction

Type 1 diabetes (T1D) is an autoimmune disease in

which the pancreatic beta cells are selectively destroyed by

the cells of the immune system. The development of this

autoimmune condition is influenced by both genetic and

environmental factors, with the concordance rate for dia-

betes development in identical twins being around 40%.1

T1D is a disease of juvenile onset that was lethal before

the 1920s, when Banting and Best discovered insulin and

provided a means of replacing the hormone lost by auto-

immune destruction of the pancreatic beta cell.2 Given

the importance of genetic background in the predisposi-

tion to diabetes, this suggests that potentially lethal allelic

variants of certain genes have been retained, either

because they have historically conferred a strong selective

advantage or because they are in linkage disequilibrium

with advantageous alleles. Such alleles might have histori-

cally provided increased resistance to infection.

In humans, overt onset of T1D is manifest when 70%

of the b cell mass has been destroyed and there is insuffi-

cient insulin to maintain glucose homeostasis. Thereafter,

daily insulin injections are required for survival. There are

a range of complications, some of which are life threaten-

ing, which can arise following onset of diabetes, including

retinopathy, nephropathy and neuropathy. Considerable

effort has been, and is being, expended to prevent the

onset of this autoimmune disease as well as to reverse it

once it has been initiated. In terms of pathogenesis,

analysis of pancreatic biopsies from diabetic individuals

has shown the presence of mononuclear infiltration com-

prising CD4+ T cells, CD8+ T cells, B cells and macro-

phages in and around the islet area.3 The incidence of

this autoimmune disease4,5 and some others such as

systemic lupus erythematosus (SLE) has been increasing

dramatically in the developed world, and there has been

great interest in identifying causative agents of these auto-

immune disorders. In terms of T1D, the agents that have

been examined include both dietary factors and infectious

agents. Dietary modifiers that have been studied include

cow’s milk and food containing nitrites, nitrates or nitro-

samine, but no conclusive evidence has been obtained that

such agents play a role in causing T1D. Antibodies to

cow’s milk proteins have been detected in the serum of

individuals with T1D, leading to the proposition that early

introduction of cow’s milk protein to the infant diet may

play a role in development of this autoimmune disease. It

has also been postulated that beta-lactoglobulin, which is

present in cow’s milk but not in human milk, may initiate

an immune response in babies that is cross-reactive with

glycodelin and that this response against glycodelin inter-

feres with the ability of this molecule to modulate immune

responses.6 Several studies have been carried out to test

the hypothesis of a link between cow’s milk products and

diabetes, but the conclusions drawn have varied.7–11

It has also been postulated that certain infections might

initiate an autoimmune response against the pancreatic

beta cells. A viral aetiology for the development of T1D
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Summary

The development of type 1 diabetes is influenced by both genetic and

environmental factors. The current rise in the incidence of diabetes is

occurring more rapidly than can be accounted for by genetic change,

highlighting the influence of environmental modifiers. Considerable effort

has been expended to identify infectious agents that might be responsible

for this rise in incidence, but no single infectious agent has been linked to

this dramatic increase in type 1 diabetes. There has been increasing inter-

est in the possibility that infections of historical importance that might

have shaped our immune systems over evolutionary time may also have

played a role in down-modulating some autoimmune and allergic dis-

orders. In this review, some of the ways in which certain organisms might

have influenced the onset of autoimmunity are discussed.
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appeared to be compelling following the isolation of a

virus from the pancreas of a diabetic patient and the abil-

ity of certain viral infections to initiate diabetes in mice

or non-human primates.12–15 The apparent seasonal onset

of T1D further supported the proposition that infection

might precipitate diabetes onset. However, further under-

standing of the aetiology of diabetes revealed that auto-

immunity is present many years before the clinical onset of

disease, with autoantibodies providing surrogate markers

of beta cell autoreactivity.16 Extensive searches for a com-

mon viral insult in mothers of and children with T1D have

not been conclusive,17 and alternative explanations for the

dramatic rise in diabetes has therefore been sought. One

possible explanation that arose from experimental obser-

vations in animal models of T1D is that infection might

have inhibited the development of diabetes.18,19 There

have been dramatic changes in the developed world over

the last century, with marked improvements in social and

economic conditions. This has led to reduced exposure to

a range of infectious agents and has dramatically altered

the balance between our immune systems and infections

of historical importance. It has been proposed that such a

change in exposure to certain infectious agents might be

responsible for the increase in diabetes and other autoim-

mune conditions such as SLE and multiple sclerosis

(MS).4,18,20,21 The situation in autoimmunity parallels

that seen in the field of allergy, where it has been called

the ‘hygiene hypothesis’.22 This does not preclude the

possibility that certain infections might precipitate some

autoimmune conditions and indeed there are some con-

ditions where this is clearly the case, for example in the

reactive arthritides. However, there are now many exam-

ples from animal models of human autoimmune diseases

where certain infections have been shown to modulate

either the spontaneous onset or the experimental induc-

tion of autoimmunity. These are summarized in Table 1.

On the basis of some of these findings, infections with

live worms have been carried out in the treatment of

inflammatory bowel diseases, with some evidence

of improvement in the clinical condition.23 In terms of

human studies, the finding that MS patients with parasitic

infections had a less severe disease course than non-

infected individuals within a patient cohort is of consider-

able interest and provides possible support for the

hypothesis that infection might inhibit the development

of, or ameliorate, autoimmune pathology.24

How might infection inhibit the development of
autoimmunity?

The hypothesis as it applies to T1D is that certain infec-

tions of historical importance have shaped our immune

systems to select for individuals who are able to survive

the infection and do not develop a disproportionate

response to the organism resulting in tissue pathology. It

is also proposed that these infections would inhibit the

development of T1D. With improved sanitation and

living conditions, together with vaccination strategies, our

exposure to infectious agents and development of disease

has been markedly diminished. Therefore it is possible

that an alteration of the environment over the last

60 years that might play a role in the increased incidence

of T1D might be reduced exposure to infectious agents.

In terms of infections that might have played such a role,

analyses of coprolites and prehistoric mummies, such as

the ‘ice man’ of the Otzal Alps and pre-Columbian mum-

mies in Peru, have revealed the presence of a range of

organisms to which these ancient ancestors were exposed,

including mycobacteria and parasites. The hypothesis that

infections with agents such as mycobacteria or helminth

infections are able to inhibit the onset of T1D can be

tested using robust animal models of human T1D. The

NOD mouse spontaneously develops T1D and is widely

used to investigate factors contributing to pancreatic b
cell destruction.25 It has been shown that a mononuclear

infiltrate appears in the pancreas when mice are around

5 weeks of age. As in humans with T1D, this infiltrate

contains CD4+ T cells, CD8+ T cells, macrophages, den-

dritic cells and b cells. At around 10–12 weeks of age the

infiltrate disrupts islet architecture, b cell destruction is

observed and diabetes development occurs.

Table 1. Infectious agents demonstrated to inhibit autoimmune

pathology

Autoimmune/

inflammatory disease Infection/agents inhibiting pathology

Type 1 diabetes Schistosoma mansoni

(live infection, eggs, SEA, SWA)18,19

Trichinella spiralis28

Heligmosomoides polygyrus28

Mycobacterium avium26

Mycobacterium bovis56

Salmonella typhimurium54

Experimental

autoimmune disease

Schistosoma mansoni

(live infection, eggs) 57,58

Encephalomyelitis Mycobacterium bovis55

Bordetella pertussis

Induced Graves’ disease Schistosoma mansoni59

Mycobacterium bovis60

Collagen-induced

arthritis

Acanthocheilonema viteae

(secreted product, ES-62)49

Streptococcus sanguinis61

Trypanosoma brucei62

Inflammatory bowel

disease

Trichinella spiralis63

Schistosoma mansoni (eggs)64,65

Heligmosomoides polygyrus66

Hymenolepis diminuta67

Crohn’s disease Trichurus suis68

SEA, soluble egg antigen; SWA, soluble worm antigen; ES-62, excre-

tory-secretory product 62.
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When NOD mice are infected with mycobacteria or

helminths or exposed to products of these organisms, the

spontaneous development of T1D is inhibited.18,26–28 It is

now recognized that certain infectious agents, particularly

those that chronically infect the host, induce immuno-

regulatory circuits. This regulation could not only dam-

pen the host response against the pathogen but also

reduce damage to host tissue. There is a range of ways in

which this can be accomplished, and studies of the inter-

actions between infectious agents and the immune system

have highlighted several key pathways.

Infection of 4–5-week-old NOD mice with Schistosoma

mansoni or injection of soluble egg antigen (SEA) or solu-

ble worm antigen (SWA) from this helminth prevented

the onset of diabetes. This protection was not seen if

exposure to helminth antigens was delayed until the mice

were 10 weeks of age. Helminth antigens are able to

induce interleukin (IL)-10 production by dendritic cells

and B cells as well as being able to induce alternatively

activated macrophages, invariant natural killer T cells

(iNKTs) and regulatory T cells.19,29–32 The exact way in

which helminth antigens such as those from S. mansoni

mediate these effects is under investigation by several

groups. IL-10 and transforming growth factor (TGF)-b
play immunomodulatory roles and are produced by cells

of both the innate and the adaptive immune response.

IL-10 is induced by several infectious agents and not only

plays a role in delaying or inhibiting the host immune

response but also in limiting tissue pathology.30,33–35 Its

importance is underscored by the fact that surrogate

IL-10 is encoded by some viruses. Exogenous administra-

tion of IL-10 has been shown to inhibit the development

of diabetes in NOD mice and blockade of its receptor has

been shown to accelerate the onset of diabetes.36

In the context of T1D, this cytokine and all of these

cells have the potential to inhibit this Th1-mediated dis-

ease. NOD mice have been shown to have a deficiency in

iNKT cells and increases in this cell type inhibit the devel-

opment of diabetes.37–40 Glycolipids derived from S. man-

soni activate this cell type and increase their numbers in

NOD mice, providing a parasite-specific means of regu-

lating the onset of diabetes.19,29 Apart from inducing

IL-10 production by DCs, SEA has been shown to favour

the generation of a Th2 response as well as being able to

increase the proportional representation of regulatory T

cells (Tregs).41–44 While such responses may limit host

pathology and facilitate the complex life cycle of S. man-

soni, they clearly also have the potential to modulate the

onset of Th1-mediated autoimmune conditions. Little is

known of the effect of S. mansoni infection on Th17-

mediated autoimmune conditions.

The ability of the helminth products to skew the

immune response to Th2 has been shown to extend to

co-administered non-parasite antigens and even to influ-

ence the response to other infectious agents such as

Leishmania major.45,46 Progress has been made in identi-

fying components within the crude schistosome extracts

that are involved in the skew towards Th2 and in mast

cell recruitment.47 Identification of factors involved in the

induction and expansion of Tregs could provide biomod-

ulators of considerable therapeutic potential.

The effect of other infections on the onset of
diabetes

Although many organisms or antigens derived from them

have been shown be able to provide long-lasting prevention

of T1D in NOD mice, it is important to recognize that

this is not achieved with all infections nor with some prod-

ucts of parasites known to influence other autoimmune

responses. Excretory-secretory glycoprotein (ES-62) is a

phosphoryl choline containing a glycoprotein product of

the filarial nematode Acanthocheilonema viteae, which has

been shown to have profound immunomodulatory activi-

ties. This product is able to inhibit the onset of a range

of inflammatory disorders, including collagen-induced

arthritis,48,49 but to be unable to inhibit the spontaneous

development of T1D in NOD mice (D. Thomas, A. Cooke

and W. Harnett, unpublished data). Also, although some

virus infections have been shown to inhibit the develop-

ment of diabetes in NOD mice,50–52 infection with murine

herpesvirus 68 (MHV68), a mouse gamma herpesvirus

endowed with remarkable immunomodulatory strategies,

is unable to provide long-term prevention of diabetes in

NOD mice.53 The mechanisms by which some of these

viruses prevent the onset of diabetes remain to be fully

clarified, but in the case of coxsackievirus B4 were shown

not to involve either IL-4 or interferon (IFN)-c.51

Some bacterial infections have been shown to inhibit

the development of diabetes in NOD mice. For example,

infection of NOD mice with Salmonella typhimurium at

around 10 weeks of age, relatively late in the progression

towards the onset of diabetes, provides protection from

the development of diabetes. As Salmonella infection elic-

its potent Th1 responses in NOD mice, and T cells from

previously infected NOD mice were able to transfer dia-

betes to NOD recipients with severe combined immuno-

deficiency (SCID), this suggested protective mechanisms

other than Th2 skewing or induction of Tregs, which

were dominant in situ. Exploration of the mechanism of

diabetes prevention identified a role for dendritic cells in

modulating the trafficking of diabetogenic T cells to the

pancreas in mice infected with S. typhimurium.54 Such

effects of infection on trafficking have been noted in

other autoimmune situations. It has been shown that

infection with Mycobacterium bovis strain bacillus Cal-

mette–Guerin (BCG) redirected the trafficking of T cells

specific for myelin antigen away from the central nervous

system and into granulomas, resulting in prevention of

experimental autoimmune encephalomyelitis (EAE).55
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Concluding comments

It has become clear from a range of studies that the spon-

taneous development of diabetes in NOD mice can be

inhibited by several different infectious agents but not by

all infections. The timing of infection is important, with

some infections being able to inhibit the onset of diabetes

only if they occur before there is substantial pancreatic

infiltration. In the case of infection with S. typhimurium,

in contrast, optimal protection from diabetes is achieved

if infection occurs when there is an established infiltrate.

In the context of infection with the helminth S. mansoni,

it has become apparent that the mechanism of diabetes

prevention may differ with different stages of the parasite

life cycle and be mediated by a range of parasite-induced

immunoregulatory processes. Some of the ways in which

infectious agents may influence the onset of diabetes are

represented in Figure 1.

By identifying the ways in which infectious agents

manipulate the host response and inhibit autoreactivity, it

will become possible to develop novel therapeutic

approaches that may not require infection with a live

organism.
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